Identification and characterization of putative transposable DNA elements in solanaceous plants and Caenorhabditis elegans.
نویسندگان
چکیده
Several families of putative transposable elements (TrEs) in both solanaceous plants and Caenorhabditis elegans have been identified by screening the DNA data base for inverted repeated domains present in multiple copies in the genome. The elements are localized within intron and flanking regions of many genes. These elements consist of two inverted repeats flanking sequences ranging from 5 bp to > 500 bp. Identification of multiple elements in which sequence conservation includes both the flanking and internal regions implies that these TrEs are capable of duplicative transposition. Two of the elements were identified in promoter regions of the tomato (Lycoperiscon esculentum) polygalacturonase and potato (Solanum tuberosum) Win1 genes. The element in the polygalacturonase promoter spans a known regulatory region. In both cases, ancestral DNA sequences, which represent potential recombination target sequences prior to insertion of the elements, have been cloned from related species. The sequences of the inverted repeated domains in plants and C. elegans show a high degree of phylogenetic conservation. While frequency of the different elements is variable, some are present in very high copy number. A member of a single C. elegans TrE family is observed approximately once every 20 kb in the genome. The abundance of the described TrEs suggests utility in the genomic analysis of these and related organisms.
منابع مشابه
Data in support of genome-wide identification of lineage-specific genes within Caenorhabditis elegans
Two sets of LSGs were identified using BLAST: Caenorhabditis elegans species-specific genes (SSGs, 1423), and Caenorhabditis genus-specific genes (GSGs, 4539). The data contained in this article show SSGs and GSGs have significant differences in evolution and that most of them were formed by gene duplication and integration of transposable elements (TEs). Subsequent observation of temporal expr...
متن کاملSequence identity between an inverted repeat family of transposable elements in Drosophila and Caenorhabditis
The Tc1-like transposable elements, originally described in Caenorhabditis elegans, have a much wider phylogenetic distribution than previously thought. In this paper, we demonstrate that Tc1 shares sequence identity in its open reading frame and terminal repeats with a new transposable element Barney (also known as TCb1-Transposon Caenorhabditis briggsae 1). Barney was detected and isolated by...
متن کاملTc8, a Tourist-like transposon in Caenorhabditis elegans.
Members of the Tourist family of miniature inverted-repeat transposable elements (MITEs) are very abundant among a wide variety of plants, are frequently found associated with normal plant genes, and thus are thought to be important players in the organization and evolution of plant genomes. In Arabidopsis, the recent discovery of a Tourist member harboring a putative transposase has shed new l...
متن کاملPopulation frequencies of transposable elements in selfing and outcrossing Caenorhabditis nematodes.
Population genetics theory predicts that differences in breeding systems should be an important factor in the dynamics of selfish genetic elements, because of different intensities of selection on both hosts and elements. We examined population frequencies of transposable elements (TEs) in natural populations of the self-fertilizing nematode Caenorhabditis elegans and its outcrossing relative C...
متن کاملContinuous exchange of sequence information between dispersed Tc1 transposons in the Caenorhabditis elegans genome.
In a genome-wide analysis of the active transposons in Caenorhabditis elegans we determined the localization and sequence of all copies of each of the six active transposon families. Most copies of the most active transposons, Tc1 and Tc3, are intact but individually have a unique sequence, because of unique patterns of single-nucleotide polymorphisms. The sequence of each of the 32 Tc1 element...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 19 شماره
صفحات -
تاریخ انتشار 1995